一、光刻機中國能造嗎
可以。目前中國最牛的光刻機生產(chǎn)商就是上海微電子裝備公司(SMEE),它可以做到最精密的加工制程是90nm,相當(dāng)于2004年最新款的intel奔騰四處理器的水平。
別小瞧這個90nm制程的能力。這已經(jīng)足夠驅(qū)動基礎(chǔ)的國防和工業(yè)。哪怕是面對“所有進口光刻機都瞬間停止工作”這種極端的情況時,中國仍然有芯片可用。
在這種情況下,“斷供”就達不到“弄死人”的效果,最大的作用其實是“談判籌碼”,不會真的發(fā)生。
于是,中國這兩年芯片進口價值超越了石油,蔚為壯觀。計算力“基建”的最后一顆龍珠也基本穩(wěn)住。
這些芯片進入了服務(wù)器和移動設(shè)備,成為了云上算力和端上算力,組成了龐大的“互聯(lián)網(wǎng)基建”,組成了下一個大時代的入場券。

二、國產(chǎn) 光刻機和荷蘭光刻機的差距在哪里
中國的光刻技術(shù)和荷蘭ASML的EUV光刻技術(shù),關(guān)鍵點的區(qū)別在于采用紫外光源的不同和光源能量控制。
1、紫外光源的不同
中國光刻技術(shù)采用193nm深紫外光源,荷蘭ASML的EUV采用13.5nm極紫外光源。
光刻是制程芯片最關(guān)鍵技術(shù),制程芯片過程幾乎離不開光刻技術(shù)。但光刻技術(shù)的核心是光源,光源的波長決定了光刻技術(shù)的工藝能力。
我國光刻技術(shù)采用193nm波長的深紫外光源,即將準(zhǔn)分子深紫外光源的波長縮小到ArF的193nm。它可實現(xiàn)最高工藝節(jié)點是65nm,如采用浸入式技術(shù)可將光源縮小至134nm。為提高分辨率采取NA相移掩模技術(shù)還可推進到28nm。
到了28nm以后,由于單次曝光的圖形間距無法進一步提升,所以廣泛使用多次曝光和刻蝕的方法來求得更致密的電子線路圖形。
荷蘭ASML的EUV光刻技術(shù),采用是美國研發(fā)提供的13.5nm極紫外光源為工作波長的投影光刻技術(shù)。是用準(zhǔn)分子激光照射在錫等靶材上激發(fā)出13.5nm光子作為光刻技術(shù)的光源。
極紫外光源是傳統(tǒng)光刻技術(shù)向更短波長的合理延伸,被行業(yè)賦予了拯救摩爾定律的使命。
當(dāng)今的ASML的EUV光刻技術(shù),已能用13.5nm極紫外光制程7nm甚至5nm以下芯片。而我國還是采用193nm深紫外源光刻技術(shù),如上海微電子28nm工藝即是如此。
雖然我們采用DUV光刻技術(shù)通過多重曝光和刻蝕方法提升制程工藝,但成本巨大、良率較低、難以商業(yè)化量產(chǎn)。所以光源的不同導(dǎo)致光刻技術(shù)的重大區(qū)別。
2、光源能量控制不同
在光刻技術(shù)的光源能量精準(zhǔn)控制上,我國光刻技術(shù)與荷蘭的EUV也有重大區(qū)別。
光刻技術(shù)的光學(xué)系統(tǒng)極其復(fù)雜,要減小誤差達到高精度要求,光源的計量和控制非常重要。它可通過透鏡曝光的補償參數(shù)決定光刻的分辨率和套刻精度。
光刻技術(shù)的分辨率代表能清晰投影最小圖像的能力,和光源波長有著密切關(guān)係。在光源波長不變情況下,NA數(shù)值孔徑大小直接決定光刻技術(shù)的分辨率和工藝節(jié)點。
我國在精密加工透鏡技術(shù)上無法與ASML采用的德國蔡司鏡頭相比,所以光刻技術(shù)分辨率難以大幅提高。
套刻精度是光刻技術(shù)非常重要的技術(shù)指標(biāo),是指前后兩道工序、不同鏡頭之間彼此圖形對準(zhǔn)精度。如果對準(zhǔn)偏差、圖形就產(chǎn)生誤差,產(chǎn)品良率就小。
所以需不斷調(diào)整透鏡曝光補償參數(shù)和光源計量進行控制,達到滿意的光刻效果。我國除缺少精密加工透鏡的技術(shù)外,在光源控制、透鏡曝光參數(shù)調(diào)整上也是缺乏相關(guān)技術(shù)的。
我國在5G時代、大數(shù)據(jù)和人工智能都要用到高端芯片,離不開頂尖的光刻技術(shù),這是必須要攀登的“高峰”。相信我國刻苦研發(fā)后能掌握先進的光刻技術(shù)和設(shè)備,制程生產(chǎn)自己所需的各種高端芯片。